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Abstract

The aim of this paper is to investigate certain minimal submanifoldg8r & m)-dimensional
Riemannian spin manifold with a nonzero parallel spinor field. In particular, we give a characteri-
zation of compact totally geodesic hypersurfaces in such an ambient space. We also study minimal
surfaces in a four-dimensional hyperk&hler manifold from the viewpoint of spinors. As a result,
we recover two results about minimal tori in a four-dimensional flat torus and minimal surfaces in
a four-dimensional nonflat hyperkéhler manifold. A Lichnerowicz type formula on a submanifold
plays a key role in this paper. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

In spin geometry, Lichnerowicz formula [6] is one of the fundamental tools and yields
many important results in topology and Riemannian geometry (see [5]). Can we apply this
formula to the study of differential geometry of submanifolds?

Recently Bér [1] introduced the “submanifold theory” of Dirac operators for the study
of upper eigenvalue estimates for Dirac operators of closed hypersurfaces in real space
forms. He compared the spin connection of the submanifold with the spin connection of the
ambient space. As aresult, he obtained a relation between the Dirac operator of the ambient
space and that of the submanifold twisted with the spinor bundle of the normal bundle (see
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Lemma 2.1). This relation enables us to apply a Lichnerowicz type formula to the study of
differential geometry of submanifolds.

In this paper, we study certain minimal submanifolds in a Riemannian spin manifold with
parallel spinor fields. For example, a flat manifold and a Riemannian manifold which has one
of the Ricci-flat holonomy groupSU(n), Sp(n), G2 and Spir{7) are Riemannian spin mani-
folds equipped with a nonzero parallel spinor field. We shall consider the following problem:

Problem. Let Q be a(2n + m)-dimensional Riemannian spin manifold with a nonzero
parallel spinor field. LeM be a 2:-dimensional closed Riemannian spin manifold isomet-
rically immersed inQ. Then classify all submanifold¥ satisfying the condition that there
exists a nonzero parallel spinor figlde I' (X Q) such that

VEMEEN (4 )y = 0, (%)

whereys | denotes the restriction gf to the submanifolav.
If M istotally geodesic i@, then the condition«) will be satisfied (see Eq. (6)). Moreover,

the condition £) implies thatM is a minimal submanifold irQ (see Proposition 3.1). It
seems worthwhile to characterize minimal submanifolds with the conditipaniong all
minimal submanifolds irQ.

This paperis organized as follows. In Section 2, we review necessary results from the “sub-
manifold theory” of Dirac operators given by Bar. In Section 3, we derive a Lichnerowicz
type formula for even-dimensional Riemannian spin submanifolds of arbitrary codimen-
sions (Lemma 3.2). We apply this formula to study of the above problem and give a complete
characterization of hypersurfaces with the conditign(Theorem 3.5). In Section 4, we
discuss minimal surfaces in a four-dimensional Riemannian spin manifold with a nonzero
parallel spinor field. We give a complete answer to the above problem in the case where
the ambient space is a four-dimensional flat torus or hyperkahler manifold (Theorems 4.4
and 4.5). Finally, we notice that very recently the spinorial techniques have been used for
differential geometric study of surfaces (e.qg. [3]) and hypersurfaces [4].

2. Bér’sformulation of the submanifold theory of Dirac operators

In this section, we shall keep all the definitions and notations of Bar's paper [1]. We
first review Clifford algebras and their representations (cf. [8]). L&te anm-dimensional
oriented Euclidean vector space. We denot€bi£) the complex Clifford algebra of,

i.e. the complexification of the Clifford algeb@i(E) generated by all elements &f The
dimension ofCI(E) as a complex vector space i%. Fix an oriented orthonormal basis
e1, ..., e, for E. The complex volume elemeay is defined by

1)/2
we = /—_1[(n+ )/ ]6‘1 ey

We can easily check thaté = 1 and thatwc is independent of the choice of oriented
orthonormal basis.

If n is even, therCI(E) is isomorphic to the matrix algebré (2"/2, C) and so has
only one irreducible module, which is denoted BYE. In other words, we have a unique
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irreducible complex representation 6f(E) with representation spacEE. We denote
the Clifford multiplication byyr : CI(E) — End(¥E). When restricted to the even
subalgebraClo(E) := Clo(E) ® C, X E decomposes into a direct suBT"E @ X~ E as
Clo(E)-modules. HereZ £ E denote the eigenspace with eigenvalti for the action of
yE (wc), respectively.

If n is odd, thenCI(E) is isomorphic toM (2"—D/2 C) @ M(2"~D/2 C) as algebra
and hence has only two irreducible modulé‘é’,E and X1E. We denote the Clifford mul-
tiplication byyz ; : CI(E) — End($/E), j = 0, 1. The modulesE°E and XE can be
distinguished by the action afc. On X/ E it acts ag—1)/, j =0, 1.

Next, we explain a representation of the Clifford algebra of a direct sum of two Euclidean
vector spaces constructed from each factorA_.ahdF be oriented Euclidean vector spaces
of dimensiom andm, respectively. We review this representation in the case whis@ven.
Casel (n andm are even). We put

Y =YEQRQXF,
and define the map
y E®F — End(X)
by
y(X)(o®71):=(Ye(X)o) ® 1, y(¥)(e®@1) = (—1)®¥ 0 @ yp(¥)r,

whereX e E,Y € F,t € YF ando € X*tE oro € ¥~ E. Here deg is defined by the
equationyz (wc)o = (—1)%89 5. Then we can easily check that

yX+Y)yX+Y)o®1)=—|X+Y’0®1.

Hencey extends to a homomorphisgn: CI(E @ F) — End(X). That is to say(X, y)
is a nontrivialC/(E & F)-module of complex dimension'2 . 2/2 = 201+m)/2Sjince
dimc(Z(E @ F)) = 2tm/2 e have

(X, Y) = (X (E®F), YEoF).
The decomposition into positive and negative part is given by
SHWWEPF)=CTEQXTF)® (X EQ X F),
Y(E®F)=CTEQ XY F)® (X EQXTF).

Case 2 (n is even andn is odd). We put
»:=YE®X/F

for j = 0, 1 and define the maps
yi i E®F — End(2/)

by the same way in Case 1. Thé&©, y0) and (X1, y1) become nontrivialC/(E @
F)-modules of complex dimensiofiZ . 20n=1/2 — 2(n+m=1/2 gnd dims(Z/(E® F)) =
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2(mtm=D/2 j = 0,1. Since we can prove that the complex volume elementof
CI(E @ F) actsonx/ as(—1)/, we have

(2, yj) = (ZI(E®F), year;), Jj=01

Under the above algebraic preliminaries, we review the “submanifold theory” of Dirac
operators by Béar. LeP be an(n + m)-dimensional oriented Riemannian manifold and let
M — Q be ann-dimensional oriented immersed submanifold. Throughout this paper we
assume, unless stated otherwise, Matarries the induced Riemannian metric. We suppose
that both Riemannian manifold¢ andQ are equipped with spin structures. These induce a
unique spin structure on the normal bunef M in Q by Milnor’'s lemma (see [5, p. 85]).

We denote the Levi-Civita connections &f and Q by V¥ and V2, respectively. Let
V¥ be the normal connection o and letll be the second fundamental formMfin Q.

Forp e M andX € T,M, we have

M *
o_( Vx —lIX,)
Vx = (u(x, ) vy (1)
with respect to the decompositidh 0 = T, M & N,.

Let X1,..., X, be a positively oriented local orthonormal frameT¥ near p. Let
Y1, ..., Y, be a positively oriented local orthonormal frame Mfnear p. Thenh =
(X1,..., X, Y1,...,Yy,) is alocal section of the frame bundle @frestricted toM and
Eq. (1) is represented in matrix form as

0 M N 0 (=(II(X, Xi), Y;)ij >
Vy —(V Vy) = . 2
¥~ (Vx & V%) (((Il(x, X0, Y )j 0 @

Let oM, VN andw? be the connection 1-forms &M, vV and V€ lifted to spin(n),
spin(m) andspin(n + m), respectively. We denote the standard double covering map by
® : Spin(n + m) — SQn + m). Then Eq. (2) yields

O (@ ((dh) pX) — (@™ @ ™) ((dh) , X))

_ < 0 (— (X, X0), Y;)i )

({I1(X, X5, YD) 0

. 0 -1 G
= D (X X)), ¥)) : :

i=1j=1 i1 e 0 e+

1 n m 1 n m
= 52D M X0, Y))Ouler - f7) = O | 5D D (X, X0, Yyer - f; |

i=1j=1 i=1j=1

®3)
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wherees, ..., e, is the standard basis &" and 11, ..., f,, is the standard basis &™.
Therefore, Eq. (3) yields
l n m
@2 ((@)X) = (@M © ™) () X) = 53 Y X, X0, Vi) (plei - - (4)
i=1j=1

We denote the complex spinor bundles associated to spin structuf€y ®v and N by

Y Q, XM and X' N, respectively. Since Sp{n) is compact, these bundles carry Hermitian
inner products unique up to isomorphism. For exampld/ is induced by the action of
CI(E)on X E, sowe can choose the metric to be invariant under the action 6fRimvg. [8,

p. 24]). From the previous algebraic arguments, we e, = XM Q X N if n is even.
Letv>¥2, v¥M andv>"N pe the spin connections diQ, ¥ M andX N, respectively. The
product connection oW M ® X' N is defined by

VEIMOEN . gEM @ |1d +I1d @ V.

Eq. (4) yields

1 n m
»)
vIQ _yIMesy _ EZZ(” (X, X0), Yj)yo(Xi - Yj)

i=1j=1
1 n m
=52 o | Xi- DX X).¥))Y; | ()
i=1 j=1
X0 IMRXN 1 . Il 6
Vx© - Vi =52 ro(Xi 11X, X)), 6)

i=1

Hereyo means the Clifford multiplication o' Q. Similarly, we denote the Clifford
multiplication onX’ M and onX' N by yy, andyy, respectively.

We explain two Dirac type operators. We denote[lfy’" the Dirac operator o twisted
with the complex spinor bundIE' N, that is

n n
Dy = yo(XHVEMEIN =3 (ru (X)) @ Iy v MEFN,
j=1 j=1

This is a formally self-adjoint operator. And another operddds defined as

n
L 5
D:=) :yQ(xj)vXjQ.
j=1

We can easily check that the above definitions are independent of the choice of oriented
orthonormal frameX4, .. ., X,. Both operators act on sections B0 | ;. SinceX Q|y =

XM ® XN, we can consider that they also act on section&¥df @ Y N. Let H =
(1/n)Y"7_4111(X;, X;) be the mean curvature vector fielddfin Q. The following formula

plays an important role in this paper.
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Lemma 2.1 (Béar [1]). Ifnis even

D3N = D+ inyo(H).
Proof. By Eq. (6),

n n n
A 1
D =DV =) yroXp(Vyf = VM) = 23 o (XY yo(Xi - I(X;. X))
j=1 j=1 i=1
1 n
=5 2 ve(X; - Xyo(l (X}, Xi).
i,j=1

Sinceyo (X - X;) + yo(X; - X;) =0fori # j andll (X;, X;) = lI(X;, X;), we have

R 14
D - D" =23 voXi - Xyo(l(Xi. Xi)
i=1

1 n
=—3%0 (ZII(X,-, X,-)) - _%yQ(H). O

i=1

3. Even-dimensional submanifoldsin Riemannian spin manifolds

The purpose of this paper is to study minimal submanifolds with the conditoof @
Riemannian spin manifold with a nonzero parallel spinor field. We denofé(®y) the set
of the sections of a real or complex vector bundleRecall that a spinor fielg € I' (X Q)
is said to beparallel if V?Q(x/f) = 0forall X € I'(TQ). We can easily check that the set
of parallel spinor fields or® forms a finite-dimensional vector subspace/tf> Q) and
that each parallel spinor field has constant length. First of all, we show that the condition
(x) yields the minimality of a submanifolsf in Q.

Proposition 3.1. Let 0% be a(2n + m)-dimensional Riemannian spin manifold with
a nonzero parallel spinor field. Le¥?" be a2n-dimensional Riemannian spin manifold
isometrically immersed i%*1t". Let the normal bundl&v of M2* in 9%t carry the
induged spin structure. /2" satisfies the conditiofx), thenM %" is a minimal submanifold
in Q n+m'

Proof. By the assumption, there exists a nonzero parallel spinor fietd I" (X Q) such
that V>M@XN (), = 0. Of courseyr |y € I'(X Q) has nonzero constant length. By
Lemma 2.1, we have

2n

DN Wim) = > vo(Xi)Vy (Wl + nyo(H)Y |y = nyo(H)¥|u.
i=1
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Moreover

2n

DN Wlm) =Y voX Vg MOV (¥lm) = 0.
i=1

So we haveyg (H)y |y = 0. Taking pointwise Hermitian inner product,

|H 12 |m, ¥Im) = 0.

Since{Y¥ |y, ¥pm) # 0, we obtainH = 0. O

Next we show the following Lichnerowicz type formula. This is a fundamental formula
in our theory. For simplicityy *#®>N is denoted by at times.

Lemma 3.2 (Lichnerowicz type formula)Let Q2'*" be a (2n + m)-dimensional
Riemannian spin manifold. L&12" be a2n-dimensional Riemannian spin manifold isomet-
rically immersed inQ2**™ . Let the normal bundle&V of M2" in Q%"+ carry the induced
spin structure. We denote the scalar curvaturét by « and the curvature tensor field
of the normal connectioR " by R+. Then we have

2n m

1 1

2 L

(D32 = V*V + 2¢t5re E 'kE 1<RXhXj(Yk), YX; - X Y- Y,
I<jk<

Proof. Bythe formula(8.23)in[5, p. 164], itsufficesto calcul®&é” : N(XM®XN) —
(XM ® X N) defined by the formula

2n
1
R*No®1):= > E ym(Xi - Xj)o® (R){-I,VX]'T)
i,j=1

2n
=Y yuXi- X))o @ (RYy, ) (7)

i<j

ono ® t,wheres € I'(XtM)ore € I'(X~M),andr € I'(XN). HereR*"N means the
curvature tensor field of the connecti®" . And by the formula (4.37) in [5, p. 110], we
have

m

1
R, (D) = 5D (R, x, (Y0, Yibyw (Y- Y. 8
k<l

Plugging Eq. (8) in (7), we obtain
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2n m
1
REN(U®T):§§ > (Ry, x, (Y1), Yoym (Xi - X)o ® yn (Y - YT
i<jk<l

2n m

1
=520 Ry, x, (Y0, Y)yo(Xi - X)(@ @ yw (Ye - ¥)T)
i<jk<l

2n m

1
=520 Ry, x, (Y0, Y)yo(Xi - X; - Yie - YD) (o @ 7)
i<jk<l

1 2n m

=50 | 2D (RY, x, (V0. Y)Xi - X - Yi - Yi | (0 @ ). O
i<jk<l

Corollary 3.3. Let 02"t be a(2n + m)-dimensional Riemannian spin manifold with
a nonzero parallel spinor field. Le¥?* be a2n-dimensional closed Riemannian spin
manifold isometrically immersed i@%+™. Let the normal bundlev carry the induced
spin structure. We denote the scalar curvatur@f! by « and the mean curvature vector
field of M2 in Q2"+ by H. Then we have

2n m
2 g2 K 1 L
/M n?|H| —Z~I—§ZZ|(RX’_’XJ_(Y;<),Y1)| dvol > 0.

i<jk<l

Proof. Lety € I'(X Q) be a parallel spinor field o® such thaiy| = 1. Theny |y €
I'(¥ Q|n) also has constant length 1. By Lemma 2.1,

2n

DN Wlm) =Y vo(Xi) V2 (Wlm) + nyo(H)Y|u = nyo(H)V|u.
i=1

Hence we obtain
fM<D,€,N(w|M), D3N (¥ m)) dvol = n? /M (yo(H)Y|m, vo(H)¥|u) dvol
=n2/ |HI12(W |y, ¥l dvol = nZ/ |H|? dvol.
M M
On the other hand, by Lemma 3.2,

1
DMy | = VIV |u) + radl

2n m
1
+ 570 | DD ARY, x, (Y0, Y Xi - X - Y- Y0 | ¥lu.
i<jk<l

Taking pointwise Hermitian inner product with|; and integrating ovei,
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YN\2
/ (D) ¥ v, ¥l dvol
M

N 1
2/ (V*V@rim), ¥Im) dvol + Z/ «(¥lm, ¥ ) dvol
M M

2n m
1 L
+§/M<VQ ZZ<RX,,XJ(Y]€)’YZ>X1 X/Yle w|M9w|M> dvol.

i<jk<l

SinceDy3," is formally self-adjoint, we have

1
nZ/ |H|2dvoI=/ |V(¢|M)|2dvol+—//<dvol
M M 4 u

2n m
1
+ E/M <yQ ZZ(R)L(,»,X_,-(Yk), YOXi X Y Y | Vi, ¢|M> dvol,

i<jk<l
9)
where
2n m
<yQ DD Ry, x, (YO, YO Xi - X - Vi Yo | ¥l w|M>
i<jk<l
2n m
< DD Ry, x, Y, Yy (Xi - X - Yi - Y)W s ¥lu)|
i<jk<l
2n m
< DY Ry, x, Y, Y)llyo(Xi - X - Yie - YO ¥ |
i<jk<l
2n m 2n m
=Y Y Ry, x, (YO, Yl Iml® =YY Ry, x, (Yi), Vo).

i<jk<l i<jk<l .

Hence
1
n2/ |H|2dvolz/ |V(¢|M)|2dvo|+—/xdvol
M M 4)u
1 2n m
_E/ 3O3R, x, (Vo). Yi)l dvol
Mi<jk<l

Therefore, we obtain the conclusion. O

Proposition 3.4. Let 0%t be a(2n + m)-dimensional Riemannian spin manifold with
a nonzero parallel spinor field. Le¥?* be a2n-dimensional closed Riemannian spin
manifold isometrically immersed i@%+™. Let the normal bundlev carry the induced
spin structure. 1fM?2" is totally geodesic i02"*" and the normal connectio¥ is flat,
then the Ricci tensor field a#2" is zero



H. Iriyeh/Journal of Geometry and Physics 41 (2002) 258-273 267

Proof. Lety € I'(X Q) be a parallel spinor field o® such thaiy| = 1. Theny |y €
I'(XQlm) and|y|u| = 1. By Eq. (6),

V"N i) =0
foranyX e I'(TM). Hence the curvature tensor fighdd M®>N of vEMOZN gatisfies that

By definition, RZM®*N — R*M @ |d + 1d @ R*N.
Fix p € M. LetU be an open neighborhood of the pojnin M. Let{z;} be an oriented
orthonormal frame o2 N on U. Then we have

Yim = Zﬁj ® 1,
J

where eaclw; stands for a section of'M onU, and

0=R*MOXN(y)y) =Y " R*Moj) ®1; + Y 0, ® R¥N1;.
j j

SinceR* = 0, Eq. (8) implies thaR*N = 0, so

Z(REMUJ») ®7t; =0.
j

Hence we hav&®*¥5; = 0 for all j. We may assume that one of thg's never vanishes
onU. By the formula (1.13) in [2, p. 16], we have

2n
1 .
0=> yu(X)RgN (o)) = —5ym(Ric(X))a;,
i=1

where Ri¢X) is defined as RicX) := Y2, Ric(X, X;)X;. Sinces; # 0 onU, we obtain
Ric(X) =0foranyX € I'(TM)onU. O

If M is an oriented hypersurface immersed in a Riemannian spin margfolden the
normal bundleN is an oriented real line bundle, hence trivial. Therefore, the complex
line bundleX' N is also trivial. In particularM carries the induced spin structure from the
ambient spac®.

Theorem 3.5. Let 9?**1 be a(2n + 1)-dimensional Riemannian spin manifold with a
nonzero parallel spinor field. LeW¥?" be a2n-dimensional closed oriented Riemannian
manifold isometrically immersed i82*+1. Let M2 carry the induced spin structure. Then
the following conditions are equivalent

1. M?'is a minimal hypersurface i®?**1 and the scalar curvature g% is identically
zera
2. M?" is a minimal hypersurface i®?*+1 and the Ricci tensor field i7" is zera
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3. M? is totally geodesic ip2'+1.
4, VEMOIN (y1,1) = 0 for any parallel spinor fieldy € I'(X Q).
5. M?" satisfies the conditiox).

Proof. (1)=(3): Lety € I'(X¥'Q) be a parallel spinor field o such thatjy| = 1.
Thenvy|y € I'(XQly) and |¥|y| = 1. Suppose that = 0. Then Eq. (9) yields
VEMOEN (y14) = 0. By Eq. (5), we obtain

2n

1
0=Vy Wl = Vi ¥ N W) = 53 11X X0). Yi)yo (Xi - YDY lu
i=1

forany X € I'(TM). HereY; is a local unit normal vector field o . Fix p € M and put
¢ == yo(Y1)¥|u. Then(p, ¢) = 1 and

2n

D X, X)), Y1)yo(Xi)g = 0.
i=1

Taking Hermitian inner product withy (X ;)¢, then
D (X, X0), Y1) (vo (X, vo(X)e) + (I1(X, X;), Y1) = 0
i#j

for j =1,..., 2n. The real parts of these equations are
(X, X;), Y1)(p) =0, j=1,...,2n.

HenceM is totally geodesic irQ.
(3)=(4): Assume thall = 0. Then Eq. (6) yields

for any parallel spinor fieldr € I'(X Q).

(4)=(5): Trivial.

(5)=(1): By the assumption, there exists a nonzero parallel spinor ield I" (¥ Q)
such that

VEMEEN (1)) = 0.

By Proposition 3.1, it suffices to show the latter part of the statement of (1). By Lemma 3.2,
we have

DM m = 2yl

The condition (5) also implies thad;,V (¥|y) = 0. Hencexy |y = 0. Sincey|y is
nonzero, we conclude that= 0.

We have just proved that &)(3)=(4)=(5)=(1). Since (2) implies (1) by their
definitions, it suffices to show that )(2). But this is a direct consequence of
Proposition 3.4. O
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Nontrivial examples of hypersurfaces in Theorem 3.5 appear, for instance, in a nonflat
five-dimensional Riemannian manifold constructed by Friedrich and Kath [2, Chapter 6].
They described all nonflat compact five-dimensional Riemannian manifolds with a nonzero
parallel spinor field. Such a manifol@® is a total space of a fiber bundle ow&}. Each
fiber is a totally geodesi& 3 surface with a Ricci-flat Kéhler metric.

We also remark that the equivalence of (1) and (3) in Theorem 3.5 is obtained by using
the equation of Gauss under the assumption that the ambient@g4ckis only Ricci-flat.

4. Surfacesin four-dimensional Riemannian spin manifolds

Lemma 4.1 (Lichnerowicz type formula) Let 0 be a fourdimensional Riemannian spin
manifold. LetM? be a wo-dimensional Riemannian spin manifold isometrically immersed
in 0* We denote the Gaussian curvatureMf by K and the curvature of the normal
bundleN by K. Then we have the following formutae

1.OnI(Z Q) =N(E*M® X+tN)® I'(X~M ® £~N), it holds
(DyN)? =V*V + 1K + 3Ky.

20N X Q) =N EZTM® Y "N)®T'(X~M® XTN), it holds
(DyM)2=v*V + 1K — IKy.

Proof. We first remark that the scalar curvature is equal to twice the Gaussian curkature
on a two-dimensional Riemannian manifold and that the normal curvétyres defined
asKy = (Ry x,(Y2), 7). Letot € I'(Z*M) andtt € I'(ZN). By the same way
as the proof o% Lemma 3.2, we have

R*V(eT @t =yu(X1- X0t @ (Ry)y,th)
=ym(X1- X2)0© ® 3(Ry, x, (Y1), Y2)yw(Y1- Y2)r+
= 3Knym(V=1X1- X2)oT @ yy(V=1¥1 - Yo)r
=1Kn(cT®1h.
Foro~— e I'(X~M)andt~ € I'(X~N), we also have

R*N(o™ ®@17) = 1knym(V=1X1- X2)0~ ® yn (V=11 - Yo)T~
= 1ky(—0T)® (1) = Lky(o~ ® ).
The above two formulae yield (1). Similarly, we can prove (2). |

Proposition 4.2. Let 0* be a fourdimensional Riemannian spin manifold. L& be a
closed oriented surface immersed@. Let M? carry the induced Riemannian metric
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1. If 0% admits a nonzero parallel spinor fielt € I'(X+Q), then
/ |H|? dvol = f |V>MEN (4 4) 2 dvol + 7 (x (M) + x (N)).
M M
2. If 0% admits a nonzero parallel spinor fieltl~ € I'(X~Q), then

/M|H|2dvol = waW@”(wM)deol + 7 (x (M) — x(N)).

Here x (M) and x (N) denote the Euler numbers df and its normal bundle, respectively,
and we normalize/* such thafy*| = 1.

Proof. We first prove (1). Remark that the second Stiefel-Whitney alagd/) of M is
just the mod 2 reduction of the Euler class (see [5, p. 82]). Han¢#/) is zero and there
exists a spin structure av. If we fix a spin structure oM, thenN carries the induced spin
structure. Letyt € I'(X+ Q) be a parallel spinor field o® such thaty ™| = 1. Then
Y¥ |y € T(ZTQ|y) and|y+|y| = 1. By a similar calculation in Corollary 3.3, Lemma
4.1(1) yields

1 1
/ |H|2dvoI:/ |VEMBIN (41,12 dvol + —[ K dvol + —[ Ky dvol.
M M 2Jm 2Jm
Using the Gauss—Bonnet formula aﬁgKN dvol = 27 x (N) (see [[7], Proposition 3.3]),
we complete the proof of (1). Similarly, Lemma 4.1(2) yields the claim of (2). O

Since a four-dimensional flat torus has not only a nonzero positive parallel spinor field
but also negative one, Proposition 4.2 yields the following lemma.

Lemma4.3. Let 0% be a fourdimensional flat torus. Le¥? be a closed oriented surface
immersed inD*. Let M? carry the induced Riemannian metric M is a minimal surface
in 04, then

x (M) +[x(N)| <0.

Under the foregoing preliminaries, we shall consider the problem which we mentioned
at the beginning of this paper.

Theorem 4.4. Let Q% be afourdimensional flat torus. Le¥2 be a closed oriented surface
of genus one immersed i@*. Let M2 carry the induced Riemannian metric. Then the
following conditions are equivalent

1. M?is a minimal surface irQ%.

2. M? satisfies the conditiofx).

3. M?is totally geodesic irQ*.

4, VEMBXN (y,+1,) = 0 for any parallel spinor fieldy+ € I'(X+Q) and VZM®N
(¥~ |ar) = Ofor any parallel spinor field)y~ € I'(X~ Q).
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Proof. (3)=(2): Trivial.

(2)=(2): Trivial by Proposition 3.1.

(D)=(4): Sinceyx (M) = 0, we havex(N) = 0 by Lemma 4.3. Moreove#! = 0 and
Proposition 4.2 imply that

VEM@EN(¢+|M) — O, VEM@EN(¢7|M) =0

for any parallel spinor fieldr™ € I'(XTQ) andy ™ € I'(X~ Q).
(4)=3): Lety™ e (Xt Q) andy~ € I'(X~ Q) be parallel spinor fields o such
that|y | = 1 and|y~| = 1. By Eq. (5), we have

2 2
1
0=Vy e -V W n=5 > X X0). Y))yo(Xi - Yy |,
i=1j=1
(10)
and
1 2 2
0=Vy “W )=V "N @) = 53 0 (INX. X0 Yy (Xi - Yy |w
i=1j=1
(11)

forany X e I"'(TM). To obtain the condition (3), it suffices to show that
(X, X)), Y))(p)=0, i,j=12

foreach poinp € M.Fixp € Mandputp := |y +v |y Ofcourse(v |y, v |p) =
(W \ms ¥ Im) = Land(y |y, ¥ |ym) = 0. From Egs. (10) and (11) it follows that

2 2
DD X, X)), Yi)yo(Xi - Y)p = 0.

i=1j=1
By taking Hermitian inner product withy (X1 - Y1)¢, we have
2(I1(X, X1), Y1) + (I1(X, X1), Y2){yo(Y2)9, yo(Y1)¢)

+(I1(X, X2), Y1)(yo(X2)e, vo (X1)¢)

+(I1(X, X2), Y2)(yo(X2- Y2)¢, yo(X1- Y1)¢) = 0. (12)
Since

(Yo(X2-Y2)p, yo(X1- Y1)

={p,vo(Y2-X2-X1-Y1)¢) = (¢, yo(X1- X2 Y1 Y2)p)

= (0. —vo(@c)p) = W Iy + ¥ In. —vF lmw + ¥ Im) =0,
the real part of Eq. (12) is

2(11(X, X1), Y1) = 0.
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Similarly, we obtain

(X, X1), Y2)(p) =0, (X, X2), Y1)(p) =0, (I1(X, X2), Y2)(p) = 0.

Hence we have the condition (3). O

The equivalence of (1) and (3) is a well-known result, but the above theorem gives an
alternative proof of the fact.

Finally, we give a result on four-dimensional hyperkahler manifolds for that problem. In
contrast to a four-dimensional flat torus, a four-dimensiowaflathyperkahler manifold
has a nonzero positive parallel spinor field, but has no negative one (see [2, Chapter 6]).

Theorem 4.5. Let 0* be a fourdimensional hyperkahler manifold. L&12 be a closed
Riemann surface immersed @f'. Then the following conditions are equivalent

1. M?is a minimal surface ir0* such thaty (M) + x (N) = 0.

2. M? is a holomorphic curve with respect to one of the complex structureg@‘ocom-
patible with the metric

3. M? satisfies the conditiogx).

4, VEMOIN .+, = 0 for any parallel spinor fieldy ™ € I'(Z+ Q).

Proof. (1)=(4): Trivial by Proposition 4.2(1).

(4)=(3): Trivial.

(3)=(1): By Proposition 3.1M? is a minimal surface irp*. Hence Proposition 4.2(1)
yields the condition (1).

Therefore, it suffices to show the equivalence of (1) and (2).

(D)=(2): Webster proved that under our situation,

—P — Q= x(M)+ x(N), (13)

where P is the number of complex tangent points afds the number of anti-complex
tangent points oM2 in 0* (see [9]). Since( (M) + x (N) = 0, we haveP = Q = 0. This
means thad/? is a totally real surface i@*. By Wolfson’s theorem (see [9, Theorem 2.2]
and [7, Section 2]), we obtain the condition (2).

(2)=(1): 0* has a hyperkéhler structuide J, K. If M? is a holomorphic curve with
respect to the complex structufethenM? is a Lagrangian surface i@* with respect to
the Kahler form defined by the complex structureHenceM? is a totally real surface in
Q*. By Eq. (13), we have (M) + x(N) = 0. O

We remark that the equivalence of (1) and (2) in the above theorem is already known by
Micallef and Wolfson [7, Section 1].
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