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Abstract

The aim of this paper is to investigate certain minimal submanifolds in a(2n+m)-dimensional
Riemannian spin manifold with a nonzero parallel spinor field. In particular, we give a characteri-
zation of compact totally geodesic hypersurfaces in such an ambient space. We also study minimal
surfaces in a four-dimensional hyperkähler manifold from the viewpoint of spinors. As a result,
we recover two results about minimal tori in a four-dimensional flat torus and minimal surfaces in
a four-dimensional nonflat hyperkähler manifold. A Lichnerowicz type formula on a submanifold
plays a key role in this paper. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

In spin geometry, Lichnerowicz formula [6] is one of the fundamental tools and yields
many important results in topology and Riemannian geometry (see [5]). Can we apply this
formula to the study of differential geometry of submanifolds?

Recently Bär [1] introduced the “submanifold theory” of Dirac operators for the study
of upper eigenvalue estimates for Dirac operators of closed hypersurfaces in real space
forms. He compared the spin connection of the submanifold with the spin connection of the
ambient space. As a result, he obtained a relation between the Dirac operator of the ambient
space and that of the submanifold twisted with the spinor bundle of the normal bundle (see
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Lemma 2.1). This relation enables us to apply a Lichnerowicz type formula to the study of
differential geometry of submanifolds.

In this paper, we study certain minimal submanifolds in a Riemannian spin manifold with
parallel spinor fields. For example, a flat manifold and a Riemannian manifold which has one
of the Ricci-flat holonomy groupsSU(n), Sp(n),G2 and Spin(7) are Riemannian spin mani-
folds equipped with a nonzero parallel spinor field. We shall consider the following problem:

Problem. Let Q be a(2n + m)-dimensional Riemannian spin manifold with a nonzero
parallel spinor field. LetM be a 2n-dimensional closed Riemannian spin manifold isomet-
rically immersed inQ. Then classify all submanifoldsM satisfying the condition that there
exists a nonzero parallel spinor fieldψ ∈ Γ (ΣQ) such that

∇ΣM⊗ΣN(ψ |M) = 0, (∗)
whereψ |M denotes the restriction ofψ to the submanifoldM.
If M is totally geodesic inQ, then the condition (∗) will be satisfied (see Eq. (6)). Moreover,
the condition (∗) implies thatM is a minimal submanifold inQ (see Proposition 3.1). It
seems worthwhile to characterize minimal submanifolds with the condition (∗) among all
minimal submanifolds inQ.

This paper is organized as follows. In Section 2, we review necessary results from the “sub-
manifold theory” of Dirac operators given by Bär. In Section 3, we derive a Lichnerowicz
type formula for even-dimensional Riemannian spin submanifolds of arbitrary codimen-
sions (Lemma 3.2). We apply this formula to study of the above problem and give a complete
characterization of hypersurfaces with the condition (∗) (Theorem 3.5). In Section 4, we
discuss minimal surfaces in a four-dimensional Riemannian spin manifold with a nonzero
parallel spinor field. We give a complete answer to the above problem in the case where
the ambient space is a four-dimensional flat torus or hyperkähler manifold (Theorems 4.4
and 4.5). Finally, we notice that very recently the spinorial techniques have been used for
differential geometric study of surfaces (e.g. [3]) and hypersurfaces [4].

2. Bär’s formulation of the submanifold theory of Dirac operators

In this section, we shall keep all the definitions and notations of Bär’s paper [1]. We
first review Clifford algebras and their representations (cf. [8]). LetE be ann-dimensional
oriented Euclidean vector space. We denote byCl(E) the complex Clifford algebra ofE,
i.e. the complexification of the Clifford algebraCl(E) generated by all elements ofE. The
dimension ofCl(E) as a complex vector space is 2n. Fix an oriented orthonormal basis
e1, . . . , en for E. The complex volume elementωC is defined by

ωC = √−1
[(n+1)/2]

e1 · · · en.
We can easily check thatω2

C = 1 and thatωC is independent of the choice of oriented
orthonormal basis.

If n is even, thenCl(E) is isomorphic to the matrix algebraM(2n/2,C) and so has
only one irreducible module, which is denoted byΣE. In other words, we have a unique
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irreducible complex representation ofCl(E) with representation spaceΣE. We denote
the Clifford multiplication byγE : Cl(E) → End(ΣE). When restricted to the even
subalgebraCl0(E) := Cl0(E) ⊗ C, ΣE decomposes into a direct sumΣ+E ⊕ Σ−E as
Cl0(E)-modules. HereΣ±E denote the eigenspace with eigenvalue±1 for the action of
γE(ωC), respectively.

If n is odd, thenCl(E) is isomorphic toM(2(n−1)/2,C) ⊕ M(2(n−1)/2,C) as algebra
and hence has only two irreducible modules,Σ0E andΣ1E. We denote the Clifford mul-
tiplication byγE,j : Cl(E) → End(ΣjE), j = 0,1. The modulesΣ0E andΣ1E can be
distinguished by the action ofωC. OnΣjE it acts as(−1)j , j = 0,1.

Next, we explain a representation of the Clifford algebra of a direct sum of two Euclidean
vector spaces constructed from each factor. LetE andF be oriented Euclidean vector spaces
of dimensionnandm, respectively. We review this representation in the case wheren is even.

Case 1 (n andm are even). We put

Σ := ΣE ⊗ ΣF,

and define the map

γ : E ⊕ F → End(Σ)

by

γ (X)(σ ⊗ τ) := (γE(X)σ) ⊗ τ, γ (Y )(σ ⊗ τ) := (−1)degσ σ ⊗ γF (Y )τ,

whereX ∈ E, Y ∈ F, τ ∈ ΣF andσ ∈ Σ+E or σ ∈ Σ−E. Here degσ is defined by the
equationγE(ωC)σ = (−1)degσ σ . Then we can easily check that

γ (X + Y )γ (X + Y )(σ ⊗ τ) = −|X + Y |2σ ⊗ τ.

Henceγ extends to a homomorphismγ : Cl(E ⊕ F) → End(Σ). That is to say,(Σ, γ )

is a nontrivialCl(E ⊕ F)-module of complex dimension 2n/2 · 2m/2 = 2(n+m)/2. Since
dimC(Σ(E ⊕ F)) = 2(n+m)/2, we have

(Σ, γ ) � (Σ(E ⊕ F), γE⊕F ).

The decomposition into positive and negative part is given by

Σ+(E ⊕ F) = (Σ+E ⊗ Σ+F) ⊕ (Σ−E ⊗ Σ−F),
Σ−(E ⊕ F) = (Σ+E ⊗ Σ−F) ⊕ (Σ−E ⊗ Σ+F).

Case 2 (n is even andm is odd). We put

Σj := ΣE ⊗ ΣjF

for j = 0,1 and define the maps

γj : E ⊕ F → End(Σj )

by the same way in Case 1. Then(Σ0, γ0) and (Σ1, γ1) become nontrivialCl(E ⊕
F)-modules of complex dimension 2n/2 ·2(m−1)/2 = 2(n+m−1)/2, and dimC(Σ

j (E⊕F)) =
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2((n+m)−1)/2, j = 0,1. Since we can prove that the complex volume elementωC of
Cl(E ⊕ F) acts onΣj as(−1)j , we have

(Σj , γj ) � (Σj (E ⊕ F), γE⊕F,j ), j = 0,1.

Under the above algebraic preliminaries, we review the “submanifold theory” of Dirac
operators by Bär. LetQ be an(n+m)-dimensional oriented Riemannian manifold and let
M ↪→ Q be ann-dimensional oriented immersed submanifold. Throughout this paper we
assume, unless stated otherwise, thatM carries the induced Riemannian metric. We suppose
that both Riemannian manifoldsM andQ are equipped with spin structures. These induce a
unique spin structure on the normal bundleN ofM inQ by Milnor’s lemma (see [5, p. 85]).

We denote the Levi-Civita connections ofM andQ by ∇M and∇Q, respectively. Let
∇N be the normal connection onN and letII be the second fundamental form ofM in Q.
Forp ∈ M andX ∈ TpM, we have

∇Q
X =

( ∇M
X −II(X, ·)∗

II(X, ·) ∇N
X

)
(1)

with respect to the decompositionTpQ = TpM ⊕ Np.
Let X1, . . . , Xn be a positively oriented local orthonormal frame ofTM nearp. Let

Y1, . . . , Ym be a positively oriented local orthonormal frame ofN nearp. Thenh :=
(X1, . . . , Xn, Y1, . . . , Ym) is a local section of the frame bundle ofQ restricted toM and
Eq. (1) is represented in matrix form as

∇Q
X − (∇M

X ⊕ ∇N
X ) =

(
0 (−〈II(X,Xi), Yj 〉)ij

(〈II(X,Xi), Yj 〉)ji 0

)
. (2)

Let ωM,ωN andωQ be the connection 1-forms of∇M,∇N and ∇Q lifted to spin(n),
spin(m) andspin(n + m), respectively. We denote the standard double covering map by
Θ : Spin(n + m) → SO(n + m). Then Eq. (2) yields

Θ∗(ωQ((dh)pX) − (ωM ⊕ ωN)((dh)pX))

=
(

0 (−〈II(X,Xi), Yj 〉)ij
(〈II(X,Xi), Yj 〉)ji 0

)

=
n∑

i=1

m∑
j=1

〈II(X,Xi), Yj 〉




...
...

· · · 0 · · · −1 · · ·
...

...

· · · 1 · · · 0 · · ·
...

...




(i

(n + j

= 1

2

n∑
i=1

m∑
j=1

〈II(X,Xi), Yj 〉Θ∗(ei · fj ) = Θ∗


1

2

n∑
i=1

m∑
j=1

〈II(X,Xi), Yj 〉ei · fj

 ,

(3)
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wheree1, . . . , en is the standard basis ofRn andf1, . . . , fm is the standard basis ofRm.
Therefore, Eq. (3) yields

ωQ((dh)pX) − (ωM ⊕ ωN)((dh)pX) = 1

2

n∑
i=1

m∑
j=1

〈II(X,Xi), Yj 〉(p)ei · fj . (4)

We denote the complex spinor bundles associated to spin structures ofTQ,TM andN by
ΣQ,ΣM andΣN , respectively. Since Spin(n) is compact, these bundles carry Hermitian
inner products unique up to isomorphism. For example,ΣM is induced by the action of
Cl(E) onΣE, so we can choose the metric to be invariant under the action of Pin(n) (e.g. [8,
p. 24]). From the previous algebraic arguments, we haveΣQ|M = ΣM⊗ΣN if n is even.
Let∇ΣQ,∇ΣM and∇ΣN be the spin connections onΣQ,ΣM andΣN , respectively. The
product connection onΣM ⊗ ΣN is defined by

∇ΣM⊗ΣN := ∇ΣM ⊗ Id + Id ⊗ ∇ΣN.

Eq. (4) yields

∇ΣQ
X − ∇ΣM⊗ΣN

X = 1

2

n∑
i=1

m∑
j=1

〈II(X,Xi), Yj 〉γQ(Xi · Yj )

= 1

2

n∑
i=1

γQ


Xi ·

m∑
j=1

〈II(X,Xi), Yj 〉Yj

 , (5)

∇ΣQ
X − ∇ΣM⊗ΣN

X = 1

2

n∑
i=1

γQ(Xi · II(X,Xi)). (6)

HereγQ means the Clifford multiplication onΣQ|M . Similarly, we denote the Clifford
multiplication onΣM and onΣN by γM andγN , respectively.

We explain two Dirac type operators. We denote byDΣN
M the Dirac operator onM twisted

with the complex spinor bundleΣN , that is

DΣN
M :=

n∑
j=1

γQ(Xj )∇ΣM⊗ΣN
Xj

=
n∑

j=1

(γM(Xj ) ⊗ Id)∇ΣM⊗ΣN
Xj

.

This is a formally self-adjoint operator. And another operatorD̂ is defined as

D̂ :=
n∑

j=1

γQ(Xj )∇ΣQ
Xj

.

We can easily check that the above definitions are independent of the choice of oriented
orthonormal frameX1, . . . , Xn. Both operators act on sections ofΣQ|M . SinceΣQ|M =
ΣM ⊗ ΣN , we can consider that they also act on sections ofΣM ⊗ ΣN . Let H :=
(1/n)

∑n
i=1II(Xi,Xi) be the mean curvature vector field ofM inQ. The following formula

plays an important role in this paper.
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Lemma 2.1 (Bär [1]). If n is even,

DΣN
M = D̂ + 1

2nγQ(H).

Proof. By Eq. (6),

D̂ − DΣN
M =

n∑
j=1

γQ(Xj )(∇ΣQ
Xj

− ∇ΣM⊗ΣN
Xj

) = 1

2

n∑
j=1

γQ(Xj )

n∑
i=1

γQ(Xi · II(Xj ,Xi))

= 1

2

n∑
i,j=1

γQ(Xj · Xi)γQ(II(Xj ,Xi)).

SinceγQ(Xj · Xi) + γQ(Xi · Xj) = 0 for i �= j andII(Xj ,Xi) = II(Xi,Xj ), we have

D̂ − DΣN
M = 1

2

n∑
i=1

γQ(Xi · Xi)γQ(II(Xi,Xi))

= −1

2
γQ

(
n∑

i=1

II(Xi,Xi)

)
= −n

2
γQ(H). �

3. Even-dimensional submanifolds in Riemannian spin manifolds

The purpose of this paper is to study minimal submanifolds with the condition (∗) of a
Riemannian spin manifold with a nonzero parallel spinor field. We denote byΓ (V ) the set
of the sections of a real or complex vector bundleV . Recall that a spinor fieldψ ∈ Γ (ΣQ)

is said to beparallel if ∇ΣQ
X (ψ) = 0 for all X ∈ Γ (TQ). We can easily check that the set

of parallel spinor fields onQ forms a finite-dimensional vector subspace ofΓ (ΣQ) and
that each parallel spinor field has constant length. First of all, we show that the condition
(∗) yields the minimality of a submanifoldM in Q.

Proposition 3.1. LetQ2n+m be a(2n + m)-dimensional Riemannian spin manifold with
a nonzero parallel spinor field. LetM2n be a2n-dimensional Riemannian spin manifold
isometrically immersed inQ2n+m. Let the normal bundleN of M2n in Q2n+m carry the
induced spin structure. IfM2n satisfies the condition(∗), thenM2n is a minimal submanifold
in Q2n+m.

Proof. By the assumption, there exists a nonzero parallel spinor fieldψ ∈ Γ (ΣQ) such
that∇ΣM⊗ΣN(ψ |M) = 0. Of course,ψ |M ∈ Γ (ΣQ|M) has nonzero constant length. By
Lemma 2.1, we have

DΣN
M (ψ |M) =

2n∑
i=1

γQ(Xi)∇ΣQ
Xi

(ψ |M) + nγQ(H)ψ |M = nγQ(H)ψ |M.
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Moreover

DΣN
M (ψ |M) =

2n∑
i=1

γQ(Xi)∇ΣM⊗ΣN
Xi

(ψ |M) = 0.

So we haveγQ(H)ψ |M = 0. Taking pointwise Hermitian inner product,

|H |2〈ψ |M,ψ |M 〉 = 0.

Since〈ψ |M,ψ |M 〉 �= 0, we obtainH = 0. �

Next we show the following Lichnerowicz type formula. This is a fundamental formula
in our theory. For simplicity∇ΣM⊗ΣN is denoted by∇ at times.

Lemma 3.2 (Lichnerowicz type formula).Let Q2n+m be a (2n + m)-dimensional
Riemannian spin manifold. LetM2n be a2n-dimensional Riemannian spin manifold isomet-
rically immersed inQ2n+m. Let the normal bundleN ofM2n in Q2n+m carry the induced
spin structure. We denote the scalar curvature ofM2n by κ and the curvature tensor field
of the normal connection∇N byR⊥. Then we have

(DΣN
M )2 = ∇∗∇ + 1

4
κ + 1

2
γQ


 2n∑

i<j

m∑
k<l

〈R⊥
Xi,Xj

(Yk), Yl〉Xi · Xj · Yk · Yl

 .

Proof. By the formula (8.23) in [5, p. 164], it suffices to calculateRΣN : Γ (ΣM⊗ΣN) →
Γ (ΣM ⊗ ΣN) defined by the formula

RΣN(σ ⊗ τ) := 1

2

2n∑
i,j=1

γM(Xi · Xj)σ ⊗ (RΣN
Xi,Xj

τ )

=
2n∑
i<j

γM(Xi · Xj)σ ⊗ (RΣN
Xi,Xj

τ ) (7)

onσ ⊗ τ , whereσ ∈ Γ (Σ+M) or σ ∈ Γ (Σ−M), andτ ∈ Γ (ΣN). HereRΣN means the
curvature tensor field of the connection∇ΣN . And by the formula (4.37) in [5, p. 110], we
have

RΣN
Xi,Xj

(τ ) = 1

2

m∑
k<l

〈R⊥
Xi,Xj

(Yk), Yl〉γN(Yk · Yl)τ. (8)

Plugging Eq. (8) in (7), we obtain
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RΣN(σ ⊗ τ)= 1

2

2n∑
i<j

m∑
k<l

〈R⊥
Xi,Xj

(Yk), Yl〉γM(Xi · Xj)σ ⊗ γN(Yk · Yl)τ

= 1

2

2n∑
i<j

m∑
k<l

〈R⊥
Xi,Xj

(Yk), Yl〉γQ(Xi · Xj)(σ ⊗ γN(Yk · Yl)τ )

= 1

2

2n∑
i<j

m∑
k<l

〈R⊥
Xi,Xj

(Yk), Yl〉γQ(Xi · Xj · Yk · Yl)(σ ⊗ τ)

= 1

2
γQ


 2n∑

i<j

m∑
k<l

〈R⊥
Xi,Xj

(Yk), Yl〉Xi · Xj · Yk · Yl

 (σ ⊗ τ). �

Corollary 3.3. Let Q2n+m be a (2n + m)-dimensional Riemannian spin manifold with
a nonzero parallel spinor field. LetM2n be a 2n-dimensional closed Riemannian spin
manifold isometrically immersed inQ2n+m. Let the normal bundleN carry the induced
spin structure. We denote the scalar curvature ofM2n byκ and the mean curvature vector
field ofM2n in Q2n+m byH . Then we have

∫
M


n2|H |2 − κ

4
+ 1

2

2n∑
i<j

m∑
k<l

|〈R⊥
Xi,Xj

(Yk), Yl〉|

 dvol ≥ 0.

Proof. Let ψ ∈ Γ (ΣQ) be a parallel spinor field onQ such that|ψ | ≡ 1. Thenψ |M ∈
Γ (ΣQ|M) also has constant length 1. By Lemma 2.1,

DΣN
M (ψ |M) =

2n∑
i=1

γQ(Xi)∇ΣQ
Xi

(ψ |M) + nγQ(H)ψ |M = nγQ(H)ψ |M.

Hence we obtain∫
M

〈DΣN
M (ψ |M),DΣN

M (ψ |M)〉 dvol= n2
∫
M

〈γQ(H)ψ |M, γQ(H)ψ |M 〉 dvol

= n2
∫
M

|H |2〈ψ |M,ψ |M 〉 dvol = n2
∫
M

|H |2 dvol.

On the other hand, by Lemma 3.2,

(DΣN
M )2ψ |M = ∇∗∇(ψ |M) + 1

4
κψ |M

+ 1

2
γQ


 2n∑

i<j

m∑
k<l

〈R⊥
Xi,Xj

(Yk), Yl〉Xi · Xj · Yk · Yl

ψ |M.

Taking pointwise Hermitian inner product withψ |M and integrating overM,
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〈(DΣN
M )2ψ |M,ψ |M 〉 dvol

=
∫
M

〈∇∗∇(ψ |M),ψ |M 〉 dvol + 1

4

∫
M

κ〈ψ |M,ψ |M 〉 dvol

+ 1

2

∫
M

〈
γQ


 2n∑

i<j

m∑
k<l

〈R⊥
Xi,Xj

(Yk), Yl〉Xi · Xj · Yk · Yl

ψ |M,ψ |M

〉
dvol.

SinceDΣN
M is formally self-adjoint, we have

n2
∫
M

|H |2 dvol =
∫
M

|∇(ψ |M)|2 dvol + 1

4

∫
M

κ dvol

+ 1

2

∫
M

〈
γQ


 2n∑

i<j

m∑
k<l

〈R⊥
Xi,Xj

(Yk), Yl〉Xi · Xj · Yk · Yl

ψ |M,ψ |M

〉
dvol,

(9)

where∣∣∣∣∣∣
〈
γQ


 2n∑

i<j

m∑
k<l

〈R⊥
Xi,Xj

(Yk), Yl〉Xi · Xj · Yk · Yl

ψ |M,ψ |M

〉∣∣∣∣∣∣
≤

2n∑
i<j

m∑
k<l

|〈R⊥
Xi,Xj

(Yk), Yl〉||〈γQ(Xi · Xj · Yk · Yl)ψ |M,ψ |M 〉|

≤
2n∑
i<j

m∑
k<l

|〈R⊥
Xi,Xj

(Yk), Yl〉||γQ(Xi · Xj · Yk · Yl)ψ |M ||ψ |M |

=
2n∑
i<j

m∑
k<l

|〈R⊥
Xi,Xj

(Yk), Yl〉||ψ |M |2 =
2n∑
i<j

m∑
k<l

|〈R⊥
Xi,Xj

(Yk), Yl〉|.

Hence

n2
∫
M

|H |2 dvol≥
∫
M

|∇(ψ |M)|2 dvol + 1

4

∫
M

κ dvol

−1

2

∫
M

2n∑
i<j

m∑
k<l

|〈R⊥
Xi,Xj

(Yk), Yl〉| dvol.

Therefore, we obtain the conclusion. �

Proposition 3.4. LetQ2n+m be a(2n + m)-dimensional Riemannian spin manifold with
a nonzero parallel spinor field. LetM2n be a 2n-dimensional closed Riemannian spin
manifold isometrically immersed inQ2n+m. Let the normal bundleN carry the induced
spin structure. IfM2n is totally geodesic inQ2n+m and the normal connection∇⊥ is flat,
then the Ricci tensor field ofM2n is zero.
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Proof. Let ψ ∈ Γ (ΣQ) be a parallel spinor field onQ such that|ψ | ≡ 1. Thenψ |M ∈
Γ (ΣQ|M) and|ψ |M | ≡ 1. By Eq. (6),

∇ΣM⊗ΣN
X (ψ |M) = 0

for anyX ∈ Γ (TM). Hence the curvature tensor fieldRΣM⊗ΣN of ∇ΣM⊗ΣN satisfies that

RΣM⊗ΣN(ψ |M) = 0.

By definition,RΣM⊗ΣN = RΣM ⊗ Id + Id ⊗ RΣN .
Fix p ∈ M. LetU be an open neighborhood of the pointp in M. Let {τj } be an oriented

orthonormal frame ofΣN onU . Then we have

ψ |M =
∑
j

σj ⊗ τj ,

where eachσj stands for a section ofΣM onU , and

0 = RΣM⊗ΣN(ψ |M) =
∑
j

(RΣMσj ) ⊗ τj +
∑
j

σj ⊗ RΣNτj .

SinceR⊥ = 0, Eq. (8) implies thatRΣN = 0, so∑
j

(RΣMσj ) ⊗ τj = 0.

Hence we haveRΣMσj = 0 for all j . We may assume that one of theσj ’s never vanishes
onU . By the formula (1.13) in [2, p. 16], we have

0 =
2n∑
i=1

γM(Xi)R
ΣM
X,Xi

(σj ) = −1

2
γM(Ric(X))σj ,

where Ric(X) is defined as Ric(X) := ∑2n
i=1Ric(X,Xi)Xi . Sinceσj �= 0 onU , we obtain

Ric(X) = 0 for anyX ∈ Γ (TM) onU . �

If M is an oriented hypersurface immersed in a Riemannian spin manifoldQ, then the
normal bundleN is an oriented real line bundle, hence trivial. Therefore, the complex
line bundleΣN is also trivial. In particular,M carries the induced spin structure from the
ambient spaceQ.

Theorem 3.5. Let Q2n+1 be a (2n + 1)-dimensional Riemannian spin manifold with a
nonzero parallel spinor field. LetM2n be a2n-dimensional closed oriented Riemannian
manifold isometrically immersed inQ2n+1. LetM2n carry the induced spin structure. Then
the following conditions are equivalent:

1. M2n is a minimal hypersurface inQ2n+1 and the scalar curvature ofM2n is identically
zero.

2. M2n is a minimal hypersurface inQ2n+1 and the Ricci tensor field ofM2n is zero.
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3. M2n is totally geodesic inQ2n+1.
4. ∇ΣM⊗ΣN(ψ |M) = 0 for any parallel spinor fieldψ ∈ Γ (ΣQ).
5. M2n satisfies the condition(∗).

Proof. (1)⇒(3): Let ψ ∈ Γ (ΣQ) be a parallel spinor field onQ such that|ψ | ≡ 1.
Thenψ |M ∈ Γ (ΣQ|M) and |ψ |M | ≡ 1. Suppose thatκ = 0. Then Eq. (9) yields
∇ΣM⊗ΣN(ψ |M) = 0. By Eq. (5), we obtain

0 = ∇ΣQ
X (ψ |M) − ∇ΣM⊗ΣN

X (ψ |M) = 1

2

2n∑
i=1

〈II(X,Xi), Y1〉γQ(Xi · Y1)ψ |M

for anyX ∈ Γ (TM). HereY1 is a local unit normal vector field onM. Fix p ∈ M and put
ϕ := γQ(Y1)ψ |M . Then〈ϕ, ϕ〉 = 1 and

2n∑
i=1

〈II(X,Xi), Y1〉γQ(Xi)ϕ = 0.

Taking Hermitian inner product withγQ(Xj )ϕ, then∑
i �=j

〈II(X,Xi), Y1〉〈γQ(Xi)ϕ, γQ(Xj )ϕ〉 + 〈II(X,Xj ), Y1〉 = 0

for j = 1, . . . ,2n. The real parts of these equations are

〈II(X,Xj ), Y1〉(p) = 0, j = 1, . . . ,2n.

HenceM is totally geodesic inQ.
(3)⇒(4): Assume thatII = 0. Then Eq. (6) yields

∇ΣM⊗ΣN(ψ |M) = 0

for any parallel spinor fieldψ ∈ Γ (ΣQ).
(4)⇒(5): Trivial.
(5)⇒(1): By the assumption, there exists a nonzero parallel spinor fieldψ ∈ Γ (ΣQ)

such that

∇ΣM⊗ΣN(ψ |M) = 0.

By Proposition 3.1, it suffices to show the latter part of the statement of (1). By Lemma 3.2,
we have

(DΣN
M )2ψ |M = 1

4κψ |M.

The condition (5) also implies thatDΣN
M (ψ |M) = 0. Henceκψ |M = 0. Sinceψ |M is

nonzero, we conclude thatκ = 0.
We have just proved that (1)⇒(3)⇒(4)⇒(5)⇒(1). Since (2) implies (1) by their

definitions, it suffices to show that (3)⇒(2). But this is a direct consequence of
Proposition 3.4. �
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Nontrivial examples of hypersurfaces in Theorem 3.5 appear, for instance, in a nonflat
five-dimensional Riemannian manifold constructed by Friedrich and Kath [2, Chapter 6].
They described all nonflat compact five-dimensional Riemannian manifolds with a nonzero
parallel spinor field. Such a manifoldQ5 is a total space of a fiber bundle overS1. Each
fiber is a totally geodesicK3 surface with a Ricci-flat Kähler metric.

We also remark that the equivalence of (1) and (3) in Theorem 3.5 is obtained by using
the equation of Gauss under the assumption that the ambient spaceQ2n+1 is only Ricci-flat.

4. Surfaces in four-dimensional Riemannian spin manifolds

Lemma 4.1 (Lichnerowicz type formula).LetQ4 be a four-dimensional Riemannian spin
manifold. LetM2 be a two-dimensional Riemannian spin manifold isometrically immersed
in Q4. We denote the Gaussian curvature ofM2 by K and the curvature of the normal
bundleN byKN . Then we have the following formulae:

1. OnΓ (Σ+Q|M) = Γ (Σ+M ⊗ Σ+N) ⊕ Γ (Σ−M ⊗ Σ−N), it holds

(DΣN
M )2 = ∇∗∇ + 1

2K + 1
2KN.

2. OnΓ (Σ−Q|M) = Γ (Σ+M ⊗ Σ−N) ⊕ Γ (Σ−M ⊗ Σ+N), it holds

(DΣN
M )2 = ∇∗∇ + 1

2K − 1
2KN.

Proof. We first remark that the scalar curvature is equal to twice the Gaussian curvatureK

on a two-dimensional Riemannian manifold and that the normal curvatureKN is defined
asKN := 〈R⊥

X1,X2
(Y2), Y1〉. Let σ+ ∈ Γ (Σ+M) andτ+ ∈ Γ (Σ+N). By the same way

as the proof of Lemma 3.2, we have

RΣN(σ+ ⊗ τ+)= γM(X1 · X2)σ
+ ⊗ (RΣN

X1,X2
τ+)

= γM(X1 · X2)σ
+ ⊗ 1

2〈R⊥
X1,X2

(Y1), Y2〉γN(Y1 · Y2)τ
+

= 1
2KNγM(

√−1X1 · X2)σ
+ ⊗ γN(

√−1Y1 · Y2)τ
+

= 1
2KN(σ

+ ⊗ τ+).

Forσ− ∈ Γ (Σ−M) andτ− ∈ Γ (Σ−N), we also have

RΣN(σ− ⊗ τ−)= 1
2KNγM(

√−1X1 · X2)σ
− ⊗ γN(

√−1Y1 · Y2)τ
−

= 1
2KN(−σ−) ⊗ (−τ−) = 1

2KN(σ
− ⊗ τ−).

The above two formulae yield (1). Similarly, we can prove (2). �

Proposition 4.2. LetQ4 be a four-dimensional Riemannian spin manifold. LetM2 be a
closed oriented surface immersed inQ4. LetM2 carry the induced Riemannian metric.
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1. If Q4 admits a nonzero parallel spinor fieldψ+ ∈ Γ (Σ+Q), then∫
M

|H |2 dvol =
∫
M

|∇ΣM⊗ΣN(ψ+|M)|2 dvol + π(χ(M) + χ(N)).

2. If Q4 admits a nonzero parallel spinor fieldψ− ∈ Γ (Σ−Q), then∫
M

|H |2 dvol =
∫
M

|∇ΣM⊗ΣN(ψ−|M)|2 dvol + π(χ(M) − χ(N)).

Hereχ(M) andχ(N) denote the Euler numbers ofM and its normal bundle, respectively,
and we normalizeψ± such that|ψ±| ≡ 1.

Proof. We first prove (1). Remark that the second Stiefel–Whitney classw2(M) of M is
just the mod 2 reduction of the Euler class (see [5, p. 82]). Hencew2(M) is zero and there
exists a spin structure onM. If we fix a spin structure onM, thenN carries the induced spin
structure. Letψ+ ∈ Γ (Σ+Q) be a parallel spinor field onQ such that|ψ+| ≡ 1. Then
ψ+|M ∈ Γ (Σ+Q|M) and|ψ+|M | ≡ 1. By a similar calculation in Corollary 3.3, Lemma
4.1(1) yields∫

M

|H |2 dvol =
∫
M

|∇ΣM⊗ΣN(ψ+|M)|2 dvol + 1

2

∫
M

K dvol + 1

2

∫
M

KN dvol.

Using the Gauss–Bonnet formula and
∫
M
KN dvol = 2πχ(N) (see [[7], Proposition 3.3]),

we complete the proof of (1). Similarly, Lemma 4.1(2) yields the claim of (2). �

Since a four-dimensional flat torus has not only a nonzero positive parallel spinor field
but also negative one, Proposition 4.2 yields the following lemma.

Lemma 4.3. LetQ4 be a four-dimensional flat torus. LetM2 be a closed oriented surface
immersed inQ4. LetM2 carry the induced Riemannian metric. IfM2 is a minimal surface
in Q4, then

χ(M) + |χ(N)| ≤ 0.

Under the foregoing preliminaries, we shall consider the problem which we mentioned
at the beginning of this paper.

Theorem 4.4. LetQ4 be a four-dimensional flat torus. LetM2 be a closed oriented surface
of genus one immersed inQ4. Let M2 carry the induced Riemannian metric. Then the
following conditions are equivalent:

1. M2 is a minimal surface inQ4.
2. M2 satisfies the condition(∗).
3. M2 is totally geodesic inQ4.
4. ∇ΣM⊗ΣN(ψ+|M) = 0 for any parallel spinor fieldψ+ ∈ Γ (Σ+Q) and ∇ΣM⊗ΣN

(ψ−|M) = 0 for any parallel spinor fieldψ− ∈ Γ (Σ−Q).
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Proof. (3)⇒(2): Trivial.
(2)⇒(1): Trivial by Proposition 3.1.
(1)⇒(4): Sinceχ(M) = 0, we haveχ(N) = 0 by Lemma 4.3. Moreover,H = 0 and

Proposition 4.2 imply that

∇ΣM⊗ΣN(ψ+|M) = 0, ∇ΣM⊗ΣN(ψ−|M) = 0

for any parallel spinor fieldψ+ ∈ Γ (Σ+Q) andψ− ∈ Γ (Σ−Q).
(4)⇒(3): Letψ+ ∈ Γ (Σ+Q) andψ− ∈ Γ (Σ−Q) be parallel spinor fields onQ such

that|ψ+| ≡ 1 and|ψ−| ≡ 1. By Eq. (5), we have

0 = ∇ΣQ
X (ψ+|M)−∇ΣM⊗ΣN

X (ψ+|M)=1

2

2∑
i=1

2∑
j=1

〈II(X,Xi), Yj 〉γQ(Xi · Yj )ψ+|M,

(10)

and

0=∇ΣQ
X (ψ−|M)−∇ΣM⊗ΣN

X (ψ−|M) = 1

2

2∑
i=1

2∑
j=1

〈II(X,Xi), Yj 〉γQ(Xi · Yj )ψ−|M

(11)

for anyX ∈ Γ (TM). To obtain the condition (3), it suffices to show that

〈II(X,Xi), Yj 〉(p) = 0, i, j = 1,2

for each pointp ∈ M. Fixp ∈ M and putϕ := ψ+|M+ψ−|M . Of course,〈ψ+|M,ψ+|M 〉 =
〈ψ−|M,ψ−|M 〉 = 1 and〈ψ+|M,ψ−|M 〉 = 0. From Eqs. (10) and (11) it follows that

2∑
i=1

2∑
j=1

〈II(X,Xi), Yj 〉γQ(Xi · Yj )ϕ = 0.

By taking Hermitian inner product withγQ(X1 · Y1)ϕ, we have

2〈II(X,X1), Y1〉 + 〈II(X,X1), Y2〉〈γQ(Y2)ϕ, γQ(Y1)ϕ〉
+ 〈II(X,X2), Y1〉〈γQ(X2)ϕ, γQ(X1)ϕ〉
+ 〈II(X,X2), Y2〉〈γQ(X2 · Y2)ϕ, γQ(X1 · Y1)ϕ〉 = 0. (12)

Since

〈γQ(X2 · Y2)ϕ, γQ(X1 · Y1)ϕ〉
= 〈ϕ, γQ(Y2 · X2 · X1 · Y1)ϕ〉 = 〈ϕ, γQ(X1 · X2 · Y1 · Y2)ϕ〉
= 〈ϕ,−γQ(ωC)ϕ〉 = 〈ψ+|M + ψ−|M,−ψ+|M + ψ−|M 〉 = 0,

the real part of Eq. (12) is

2〈II(X,X1), Y1〉 = 0.



272 H. Iriyeh / Journal of Geometry and Physics 41 (2002) 258–273

Similarly, we obtain

〈II(X,X1), Y2〉(p) = 0, 〈II(X,X2), Y1〉(p) = 0, 〈II(X,X2), Y2〉(p) = 0.

Hence we have the condition (3). �

The equivalence of (1) and (3) is a well-known result, but the above theorem gives an
alternative proof of the fact.

Finally, we give a result on four-dimensional hyperkähler manifolds for that problem. In
contrast to a four-dimensional flat torus, a four-dimensionalnonflathyperkähler manifold
has a nonzero positive parallel spinor field, but has no negative one (see [2, Chapter 6]).

Theorem 4.5. Let Q4 be a four-dimensional hyperkähler manifold. LetM2 be a closed
Riemann surface immersed inQ4. Then the following conditions are equivalent:

1. M2 is a minimal surface inQ4 such thatχ(M) + χ(N) = 0.
2. M2 is a holomorphic curve with respect to one of the complex structures onQ4 com-

patible with the metric.
3. M2 satisfies the condition(∗).
4. ∇ΣM⊗ΣN(ψ+|M) = 0 for any parallel spinor fieldψ+ ∈ Γ (Σ+Q).

Proof. (1)⇒(4): Trivial by Proposition 4.2(1).
(4)⇒(3): Trivial.
(3)⇒(1): By Proposition 3.1,M2 is a minimal surface inQ4. Hence Proposition 4.2(1)

yields the condition (1).
Therefore, it suffices to show the equivalence of (1) and (2).
(1)⇒(2): Webster proved that under our situation,

−P − Q = χ(M) + χ(N), (13)

whereP is the number of complex tangent points andQ is the number of anti-complex
tangent points ofM2 in Q4 (see [9]). Sinceχ(M)+χ(N) = 0, we haveP = Q = 0. This
means thatM2 is a totally real surface inQ4. By Wolfson’s theorem (see [9, Theorem 2.2]
and [7, Section 2]), we obtain the condition (2).

(2)⇒(1): Q4 has a hyperkähler structureI, J,K. If M2 is a holomorphic curve with
respect to the complex structureI , thenM2 is a Lagrangian surface inQ4 with respect to
the Kähler form defined by the complex structureJ . HenceM2 is a totally real surface in
Q4. By Eq. (13), we haveχ(M) + χ(N) = 0. �

We remark that the equivalence of (1) and (2) in the above theorem is already known by
Micallef and Wolfson [7, Section 1].
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